Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Water temperatures in mountain streams are likely to rise under future climate change, with negative impacts on ecosystems and water quality. However, it is difficult to predict which streams are most vulnerable due to sparse historical records of mountain stream temperatures as well as complex interactions between snowpack, groundwater, streamflow and water temperature. Minimum flow volumes are a potentially useful proxy for stream temperature, since daily streamflow records are much more common. We confirmed that there is a strong inverse relationship between annual low flows and peak water temperature using observed data from unimpaired streams throughout the montane regions of the United States' west coast. We then used linear models to explore the relationships between snowpack, potential evapotranspiration and other climate‐related variables with annual low flow volumes and peak water temperatures. We also incorporated previous years' flow volumes into these models to account for groundwater carryover from year to year. We found that annual peak snowpack water storage is a strong predictor of summer low flows in the more arid watersheds studied. This relationship is mediated by atmospheric water demand and carryover subsurface water storage from previous years, such that multi‐year droughts with high evapotranspiration lead to especially low flow volumes. We conclude that watershed management to help retain snow and increase baseflows may help counteract some of the streamflow temperature rises expected from a warming climate, especially in arid watersheds.more » « less
-
Abstract Reducing the risk of large, severe wildfires while also increasing the security of mountain water supplies and enhancing biodiversity are urgent priorities in western US forests. After a century of fire suppression, Yosemite and Sequoia-Kings Canyon National Parks located in California’s Sierra Nevada initiated programs to manage wildfires and these areas present a rare opportunity to study the effects of restored fire regimes. Forest cover decreased during the managed wildfire period and meadow and shrubland cover increased, especially in Yosemite’s Illilouette Creek basin that experienced a 20% reduction in forest area. These areas now support greater pyrodiversity and consequently greater landscape and species diversity. Soil moisture increased and drought-induced tree mortality decreased, especially in Illilouette where wildfires have been allowed to burn more freely resulting in a 30% increase in summer soil moisture. Modeling suggests that the ecohydrological co-benefits of restoring fire regimes are robust to the projected climatic warming. Support will be needed from the highest levels of government and the public to maintain existing programs and expand them to other forested areas.more » « less
An official website of the United States government
